Category: Lppm

GeoIndistinguishability

Generate locations satisfying geo-indistinguishability properties. The method used here is the one presented by the authors of the paper and consists in adding noise following a double-exponential distribution.

Input name Type Description
epsilon a 64-bit float; optional; default: 0.001 Privacy budget
data a file; required Input dataset
Output name Type Description
data a file Transformed dataset

Promesse

Input name Type Description
alpha a distance; required Distance to enforce between two consecutive points
data a file; required Input dataset
Output name Type Description
data a file Transformed dataset

Wait4Me

Wrapper around the implementation of the Wait4Me algorithm provided by their authors.

Input name Type Description
data a file; required Input dataset
k a 32-bit integer; required Anonymity level
delta a distance; required Uncertainty
radiusMax a distance; optional Initial maximum radius used in clustering
trashMax a 64-bit float; optional; default: 0.1 Global maximum trash size, in percentage of the dataset size
chunk a boolean; optional; default: false Whether to chunk the input dataset
Output name Type Description
data a file Output dataset
trashSize a 32-bit integer Trash_size
trashedPoints a 64-bit integer Number of trashed points
discernibility a 64-bit integer Discernibility metric
totalXyTranslations a distance Total XY translations
totalTimeTranslations a duration Total time translations
xyTranslationsCount a 32-bit integer XY translation count
timeTranslationsCount a 32-bit integer Time translation count
createdPoints a 32-bit integer Number of created points
deletedPoints a 32-bit integer Number of deleted points
meanSpatialTraceTranslation a distance Mean spatial translation (per trace)
meanTemporalTraceTranslation a duration Mean temporal translation (per trace)
meanSpatialPointTranslation a distance Mean spatial translation (per point)
meanTemporalPointTranslation a duration Mean temporal translation (per point)